Invader Crusaders 2009

The Wisconsin Council on Invasive Species recognizes individuals and groups that have made outstanding efforts to control the spread of invasive species by awarding them with Invader Crusader Awards during the June Invasive Species Awareness Month each year. The 2009 Invader Crusader award winners were:

For Voluntary Efforts:

Susan Kenney – Sauk-Prairie River PALS, Sauk City

For Susan a simple project to pull garlic mustard along the Sauk River in 2006 has grown into a project that involves elementary and high school students, planting of native species, installing bird houses, a Garlic Mustard Festival, and their first controlled burn this spring. Her energy and work is having a major impact.

Roma Lenehan & Glenda Denniston – Friends of Lakeshore Nature Preserve, Madison

Roma and Glenda have had a longstanding influence at the Lakeshore Nature Preserve. They have done an outstanding job of collecting records of control efforts and results. Both Roma and Glenda have written several articles for the Friend’s newsletter and have conducted many tours.

Southeastern Wisconsin Invasive Species Consortium (SEWISC) – Kenosha, Milwaukee, Ozaukee, Racine, Sheboygan, Walworth, Washington, and Waukesha Counties

Organized in 2007, SEWISC is a cooperative of many public and private organizations. The group has accomplished a tremendous amount in just 1.5 years. They created a protocol for monitoring, prioritizing and containing species and have conducted trainings and workshops to reach out to local citizen groups, nature centers, and local government agencies. They have a goal to develop a template weed ordinance that can be used as a guide to other municipalities.

For Professional Efforts:

Bill Moore – Ecological Woodland Management, Platteville

As a restoration ecologist, Bill works not only to restore the prairies and savannas, but to teach the landowners about the commitment needed to control invasive species and manage their land. He encourages landowners to work beside him to learn various control techniques.

Peter Layton – Tallgrass Restoration, Milton

Peter purchased 220 acres in 2003 to restore it and save it from development. He has transformed the land to quality avian grassland habitat within the Lake Koshkonong Important Bird Area. His land is benefiting future research on the...
Wisconsin is fortunate to have citizens who care about our natural resources. There are several citizen-based monitoring (CBM) programs that use data collected by volunteers (for a list of programs, please check out the CBM website: http://wiatri.net/cbm/). Technology libraries have been established throughout the state that lend one or more Garmin eTrex Legend GPS units to be used in monitoring any type of natural resource whether or not that monitoring is part of a CBM program. One benefit of becoming a member of a program is that they have protocols developed for monitoring specific resources (water, insects, reptiles, invasive plants, etc.). Here is a list of the technology library locations where GPS units are available:

Northwoods CWMA
Dara Olson
Ashland, WI
715-682-6619 x 129
dolson@glifwc.org

North Lakeland Discovery Center – Bruce Greenhill
Manitowash Waters, WI
715-543-2085
bruce@discoverycenter.net

Vilas County L&CD
Ted Ritter
Eagle River, WI
715-479-3738
teritt@co.vilas.wi.us

Wild Rivers CWMA
Jamie Remme
Florence, WI
715-528-4408 x 109
jamie.remme@wisconsin.gov

Treehaven
Corky McReynolds
Tomahawk, WI
715-453-4106
cmcreyno@uwsp.edu

Spooner Basin Educator
John Haack
Spooner, WI
715-635-7406
john.haack@ces.uwex.edu

Door County S&WD
Bill Schuster
Sturgeon Bay, WI
920-746-2214
wschuster@co.door.wi.us

Isaak Walton League
Ron MacDonald
Stevens Point, WI
olly2silas@att.net

Kickapoo Valley Reserve
Sadie Urban
LaFarge, WI
608-625-2960
Sadie.urban@wisconsin.gov

SWWI Water Education Library
Peggy Compton
Lancaster, WI
608-342-1633
Peggy.compton@ces.uwex.edu

Greater Sauk CWMA (UW-Extension Baraboo) – John Exo
Baraboo, WI
608-355-3250
John.exo@ces.uwex.edu

Lakeshore Nature Preserve
Cathy Bruner
Madison, WI
608-265-9275
cbruner@fpm.wisc.edu

Rock County Parks Division
Rob Baller
Janesville, WI
608-757-5473
Baller@co.rock.wi.us

Urban Ecology Center
Tim Vargo
Milwaukee, WI
414-964-8505
tvargo@urbanecologycenter.org

Riveredge Nature Center
Marc White, Mary Holleback
Newburg, WI
262-375-2715
mwhite@riveredge.us & maryh@riveredge.us

Menominee Co. Cons. Dept.
Jeremy Johnson
Keshena, WI
715-799-5710
jerandsharj@hotmail.com

Jackson Co. UWEX
Randy Mell
Black River Falls, WI
715-284-4257
randy.mell@ces.uwex.edu

Navarino Nature Center
Tim Ewing
Shiocton, WI
715-758-6999
nnc@navarino.org

Woodland Dunes Nature Center
Jim Knickelbine
Two Rivers, WI
920-793-4007
woodlanddunes@lakefield.net

Awards from page 1

The effect of biofuel harvest on bird and insect communities through an agreement with Michigan Tech. Peter is also on the steering committee for the Invasive Removal Squad CWMA.

Gypsy Moth Suppression Team – Wisconsin Department of Natural Resources
Andrea Diss-Torrance, Bill McNee, Mark Guthmiller, and Colleen Robinson-Klug
Formed in the early 1990’s as a cost-share program for landowners and communities to suppress gypsy moths, this group has stayed committed to protecting our forests. Thousands of acres of oak forests have been protected through their efforts to provide education and financial support for suppression. They have also designed an effective education program that teaches children and adults about the biology and management of invasive insects.
In 2009, the Wisconsin DNR and Department of Transportation were well aware that there was a population of Japanese hops (Humulus japonicus) thriving on the banks of Blockhouse Creek, a tributary to the Little Platte River in Grant County. They had treated this infestation in years past. What they didn’t know was just how widespread the problem was; it was spreading throughout the Platte and Grant River watersheds.

The Friends of the Platte River and the River Alliance of Wisconsin through Project RED (Riverine Early Detectors) have begun a survey that will ultimately include the entire length of both the rivers. This will enable their organizations in partnership with the DNR to prioritize where containment practices, the pulling or spraying of outliers, should take place. Eradication in these watersheds is unlikely, but containment might help to prevent the spread of hops into the Upper Mississippi River Wildlife and Fish Refuge.

The survey is initially being conducted by car, stopping at all bridge crossings in the watershed in search of hops. The River Alliance of Wisconsin completed the first survey the last week of September in the Grant River watershed. They found Japanese hops at 13 of the 19 bridges surveyed. It was seen at every bridge crossing from the County A bridge just a few miles west of Lancaster all the way to the Hwy 133 bridge just a couple miles upstream from the confluence of the Mississippi River.

Japanese hops is an annual vine that blankets other vegetation as seen in the picture. It thrives along the banks of rivers in deposited sediment and spreads by seed during high flow events, such as the floods of 2007 and 2008. Seeds are believed to be viable for up to 3 years. It prefers full to partial shade. Its leaves are palmately lobed, having typically 5 or more lobes. The stems and undersides of the leaves are covered in rough hairs that it uses to climb other vegetation. Its flowers are small and greenish. The male and female flowers are found on separate plants.

At this time Japanese hops is known to exist in only five counties in Wisconsin. Please be on the lookout for this plant and report it immediately by calling (608) 267-7438. It is important that we quickly identify and control all new shoreline populations to prevent further spread throughout the state.

Gary Birch with the Department of Transportation has had success killing hops. His prescription is 1-1/2 oz of Habitat (salt of Imazapyr for aquatic systems) per gallon of water. He adds one ounce of MSO as a surfactant. Spraying should be done in July when vines are visible, and follow-up in late August, just as flowering commences. Remember, habitat will affect other vegetation (especially broad-leaved plants, Dicotyledons) so use spray with caution.

For more information about this project, please contact Laura MacFarland at the River Alliance of Wisconsin. For more information about Japanese hops and other river and wetland invasive plants, please see the new fact sheet at: http://www.uwsp.edu/CNR/UWEXLAKES/CBCW/Pubs/WT-905.pdf.
As garlic mustard continues to spread throughout Wisconsin, there is interest in management strategies that will prevent seed production and that can be implemented in the fall and spring to limit non-target plant injury. Research was conducted in hardwood forests in Green Bay, Peninsula State Park (Door County), and La Crosse Wisconsin to evaluate the effectiveness of herbicide application methods and concentration for controlling garlic mustard, and the effect of these treatments on non-target herbaceous vegetation. Treatments consisted of selective (Escort) and non-selective (glyphosate) herbicides either broadcast-sprayed or applied to individual plants (IPT or spot treatment). Escort was selected since it does not harm established grasses, has been shown to be effective in controlling garlic mustard in other studies, and can persist in the soil and potentially reduce germination of seedlings. Since reports have documented reduced performance of glyphosate at low concentrations in cold temperatures, two concentrations of glyphosate were compared for the IPT. All results were compared to hand pulling. Specifically the treatments were:

1. Individual Plant Treatment (IPT) with glyphosate in a 4.5 lbs acid equivalent/gal formulation (e.g. Roundup Original Max) at 1% product solution.
2. IPT with glyphosate in a 4.5 lbs acid equivalent/gal formulation at 2% product solution.
3. Broadcast-sprayed glyphosate at 0.75 lbs acid equivalent/Acre.
4. Broadcast-sprayed Escort at 0.25 oz/Acre
5. Hand-pulled plants (late fall and late spring only).

These methods were implemented during four different periods to represent typical management timings for garlic mustard in Wisconsin (see Table 1). Treatments were conducted in:

1. Early fall before a hard frost
2. Late in fall after several hard frosts (garlic mustard was still actively growing)
3. Early spring, just after the flush of garlic mustard seedling emergence and when rosettes were just beginning to bolt
4. Late spring, when garlic mustard was bolting and producing flower buds

Percent cover of garlic mustard and non-target vegetation were recorded in all plots in the middle of June, approximately one month after the late spring treatment, to compare the success of treatments. In addition, the time required to apply the methods was recorded at the La Crosse site, and summarized by application method (IPT, broadcast-spraying, hand-pulling).

Table 1: APPLICATION INFORMATION

<table>
<thead>
<tr>
<th>Timing</th>
<th>Peninsula SP</th>
<th>Green Bay</th>
<th>La Crosse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Fall</td>
<td>Date</td>
<td>Sep 28th</td>
<td>Sep 26th</td>
</tr>
<tr>
<td></td>
<td>Air temp/Soil temp</td>
<td>56F / 58F</td>
<td>74F / 62F</td>
</tr>
<tr>
<td>Late</td>
<td>Date</td>
<td>Oct 31st</td>
<td>Oct 27th</td>
</tr>
<tr>
<td>Fall</td>
<td>Air temp/Soil temp</td>
<td>57 F/ 50 F</td>
<td>41 F/ 44 F</td>
</tr>
<tr>
<td>Early</td>
<td>Date</td>
<td>April 31st</td>
<td>April 16th</td>
</tr>
<tr>
<td>Spring</td>
<td>Air temp/Soil temp</td>
<td>48 F/ 40 F</td>
<td>55 F/ 42 F</td>
</tr>
<tr>
<td>Late</td>
<td>Date</td>
<td>May 10th</td>
<td>May 8th</td>
</tr>
<tr>
<td>Spring</td>
<td>Air temp/Soil temp</td>
<td>42 F/ 42 F</td>
<td>70 F/ 58 F</td>
</tr>
</tbody>
</table>

GARLIC MUSTARD CONTROL (Table 2)

In general, all treatments applied were effective in reducing adult garlic mustard plant (second year) cover and there were few differences between time periods. Reduced control with the 1% concentration of glyphosate applied to individual plants was observed in the late fall at La Crosse and early spring in Peninsula State Park. Although air temperatures were highest at the La Crosse site, the soil temperatures (not recorded at La Crosse) may have been low compared to other sites and be a factor in reduced effectiveness with glyphosate. In contrast, control with Escort was consistent across timings at all sites. Hand-pulling garlic mustard in the fall significantly reduced cover the following summer only at one site, but was effective at two of the three sites when plants were pulled in the late spring. This is not surprising, since it is difficult to iden-
Plants out of Place

INVASIVE PLANTS ASSOCIATION OF WISCONSIN

tify and successfully pull garlic mustard plants when they are in the rosette stage in the fall, but much easier in the spring after they have bolted.

Seedling garlic mustard plants (first year) were not effectively controlled with any of the fall treatments. Escort applications in the late fall did reduce cover at Peninsula State Park, but some seedlings survived. In contrast all spring herbicide treatments nearly eliminated seedling cover. Hand pulling in the fall resulted in an increase in seedling cover the following spring at one site, but was effective at nearly eliminating seedling cover at all sites when conducted in the late spring.

Table 2: GARLIC MUSTARD COVER THE SUMMER FOLLOWING TREATMENTS. “>” indicates that garlic mustard cover in a treatment was significantly greater (p<0.05) than in untreated (Control) plots, and “<” indicates that garlic mustard cover in a treatment was significantly less (p<0.05) than in control plots at that site.

<table>
<thead>
<tr>
<th>Timing</th>
<th>Treatment</th>
<th>Green Bay</th>
<th>Peninsula State Park</th>
<th>La Crosse</th>
<th>Green Bay</th>
<th>Peninsula State Park</th>
<th>La Crosse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% Cover 1st Year Plants</td>
<td>% Cover 2nd Year Plants</td>
<td></td>
<td>% Cover 1st Year Plants</td>
<td>% Cover 2nd Year Plants</td>
<td></td>
</tr>
<tr>
<td>Early Fall</td>
<td>glyph. IPT 1%</td>
<td>57</td>
<td>48</td>
<td>3 <</td>
<td>19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>glyph. IPT 2%</td>
<td>74</td>
<td>38</td>
<td>1 <</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>glyph. brdcst</td>
<td>78</td>
<td>38</td>
<td>5 <</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Escort brdcst</td>
<td>65</td>
<td>25</td>
<td>7 <</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Late Fall</td>
<td>glyph. IPT 1%</td>
<td>78</td>
<td>39</td>
<td>17 <</td>
<td>6</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>glyph. IPT 2%</td>
<td>81</td>
<td>45</td>
<td>37</td>
<td>7</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>glyph. brdcst</td>
<td>63</td>
<td>65</td>
<td>49</td>
<td>21</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Escort brdcst</td>
<td>56</td>
<td>3 <</td>
<td>5 <</td>
<td>7</td>
<td>3 <</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>hand-pulling</td>
<td>78</td>
<td>60</td>
<td>20</td>
<td>14</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Early spring</td>
<td>glyph. IPT 1%</td>
<td>14</td>
<td>5 <</td>
<td>-</td>
<td>5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>glyph. IPT 2%</td>
<td>11</td>
<td>4 <</td>
<td>-</td>
<td>6</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>glyph. brdcst</td>
<td>12</td>
<td>5 <</td>
<td>-</td>
<td>14</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Escort brdcst</td>
<td>7</td>
<td>0 <</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Late spring</td>
<td>glyph. IPT 1%</td>
<td>1</td>
<td>0 <</td>
<td>7 <</td>
<td>2</td>
<td>0 <</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>glyph. IPT 2%</td>
<td>2</td>
<td>1 <</td>
<td>9 <</td>
<td>1</td>
<td>0 <</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>glyph. brdcst</td>
<td>1</td>
<td>2 <</td>
<td>5 <</td>
<td>1</td>
<td>2 <</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Escort brdcst</td>
<td>1</td>
<td>1 <</td>
<td>2 <</td>
<td>10</td>
<td>0 <</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>hand-pulling</td>
<td>6</td>
<td>2 <</td>
<td>8 <</td>
<td>0</td>
<td>0 <</td>
<td>25</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>40</td>
<td>53</td>
<td>39</td>
<td>58</td>
<td>19</td>
<td>42</td>
</tr>
</tbody>
</table>

COVER OF HERBACEOUS PLANTS EXCLUDING GARLIC MUSTARD (Table 3)
The cover of non-target herbaceous plants (everything other than garlic mustard) following treatments was highly variable among sites. The Green Bay site had few herbaceous plants other than garlic mustard as indicated by a cover of zero for untreated areas. At that site, herbicide treatments did increase cover of non-target herbaceous vegetation, but this effect was only significant (p<0.05) for a few treatments. In contrast, the Peninsula State Park site had a much higher cover of non-target herbaceous plants. All late spring herbicide treatments at Peninsula reduced non-target herbaceous cover significantly. Hand-pulling increased cover of other herbaceous vegetation when conducted in the late spring, but reduced cover when conducted in the late fall. This likely was due to competition from garlic mustard seedlings that germinated in greater numbers after fall hand-pulling. At La Crosse, only late spring broadcast applications of Escort significantly reduced cover of other herbaceous vegetation. IPT with glyphosate was expected to increase cover of desirable plants, but this was not observed. This may be due to the large populations of garlic mustard present at sites leading to non-target injury from IPT that may not have occurred if garlic mustard densities were lower. Results were highly variable among sites indicating that species present and site specific factors can result in differences, or the fact that different workers applied the treatments at the La Crosse site compared to the Green Bay and Peninsula State Park sites.

continued on page 6
Table 3: COVER OF ALL PLANTS EXCEPT GARLIC MUSTARD.

“>” indicates that non-target plant cover in a treatment was significantly greater (p<0.05) than in untreated (Control) plots, and “<” indicates that non-target plant cover in a treatment was significantly less (p<0.05) than in control plots at that site.

<table>
<thead>
<tr>
<th>Timing</th>
<th>Treatment</th>
<th>Green Bay %</th>
<th>Peninsula SP %</th>
<th>La Crosse %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>glyph. IPT 1%</td>
<td>13 ></td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Early Fall</td>
<td>glyph. IPT 2%</td>
<td>4</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>glyph. broadcast</td>
<td>6</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Escort broadcast</td>
<td>9 ></td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Late Fall</td>
<td>glyph. IPT 1%</td>
<td>7</td>
<td>11</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>glyph. IPT 2%</td>
<td>4</td>
<td>19</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>glyph. broadcast</td>
<td>0</td>
<td>3 <</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Escort broadcast</td>
<td>8</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>hand-pulling</td>
<td>0</td>
<td>2 <</td>
<td>42</td>
</tr>
<tr>
<td>Early spring</td>
<td>glyph. IPT 1%</td>
<td>5</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>glyph. IPT 2%</td>
<td>6</td>
<td>1 <</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>glyph. broadcast</td>
<td>12 ></td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Escort broadcast</td>
<td>9 ></td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Late spring</td>
<td>glyph. IPT 1%</td>
<td>4</td>
<td>1 <</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>glyph. IPT 2%</td>
<td>4</td>
<td>0 <</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>glyph. broadcast</td>
<td>4</td>
<td>3 <</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Escort broadcast</td>
<td>8</td>
<td>3 <</td>
<td>12 <</td>
</tr>
<tr>
<td></td>
<td>hand-pulling</td>
<td>6</td>
<td>60 ></td>
<td>54</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>0</td>
<td>27</td>
<td>36</td>
</tr>
</tbody>
</table>

TIME REQUIRED FOR TREATMENTS (Table 4)

Aside from the effectiveness of the control methods, the amount of time required to carry out a control method must be taken into consideration. Broadcast spraying of herbicide took less time than IPT or hand-pulling. Hand pulling plants in the fall required about the same amount of time as IPT. The most labor intensive treatment was hand pulling in the spring, since both first and second year plants were removed by hand. These estimates were recorded for treatment of small plots (300 ft²) and extrapolated to an acre; overall time to conduct treatments may be less per acre when larger areas are treated because of some efficiencies of scale. Also time would be less for hand-pulling in the spring if only second year plants were pulled, but areas would need to be revisited the following year.

Table 4: TIME REQUIRED FOR VARIOUS MANAGEMENT METHODS AT La Crosse.

Letters following time estimates indicate differences between treatments at p<0.05

<table>
<thead>
<tr>
<th>Timing</th>
<th>Treatment method</th>
<th>Time (hours/Acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Fall</td>
<td>Individual plant treatment (IPT)</td>
<td>14.4 B</td>
</tr>
<tr>
<td></td>
<td>Broadcast spraying</td>
<td>9.1 A</td>
</tr>
<tr>
<td></td>
<td>Hand pulling</td>
<td>18.2 B</td>
</tr>
<tr>
<td>Late Spring</td>
<td>Individual plant treatment (IPT)</td>
<td>17.6 B</td>
</tr>
<tr>
<td></td>
<td>Broadcast spraying</td>
<td>8.6 A</td>
</tr>
<tr>
<td></td>
<td>Hand pulling</td>
<td>61.0 C</td>
</tr>
</tbody>
</table>
The Invasive Removal Squad
by Linda Yunker

The creation of the Invasive Removal Squad (IRS), a new cooperative weed management area for Rock, Green, and Jefferson Counties started out as a conversation between the Lake Koshkonong Wetlands Association and Tallgrass Restoration about possible funding options for invasive species control and education. We found that the National Fish and Wildlife Foundation’s Pulling Together Initiative (PTI) program was just what we had been discussing regarding creating partnerships, sharing expertise and promoting invasive species control and education.

Using the CWMA Cookbook: A Recipe for Success as a tool to develop the IRS, we started in the fall of 2008 to bring partners from the three-county area together to develop our mission and focus: education of invasive weed control management, one site at a time. The Invasive Removal Squad will help to survey selected sites for invasives, develop a management plan, and host a demonstration project. Our goal is to foster public education about control of invasive species using on-the-ground demonstration projects to increase participation in education, management, and funding opportunities.

With this focus, the IRS has partnered with the Southeastern Wisconsin Invasive Species Consortium (SEWISC) and the Town and Country RC&D to submit a pre-application for the Pulling Together Initiative grant to fund our first project at Rose Lake Marsh in Jefferson County as well as funds to strengthen the IRS. SEWISC requested funding for a demonstration project at Havenwoods Environmental Awareness Center in Milwaukee and funds to strengthen the SEWISC organization.

The IRS also plans to target two other sites in Green and Rock Counties to offer demonstrations and education programs and materials, volunteers, communications and media contacts, and technical assistance. Outreach to youth-oriented groups will be part of our efforts.

The IRS consists of non-profit organizations, for profit ecological organizations, individuals, and federal, state, and county agencies all working towards the creation of the CWMA by providing their expertise, time, and commitment to invasive species control management. To join the IRS, or if you have any questions, you can contact Linda Yunker, Tallgrass Restoration, at (847) 925-9830 or at Linda.yunker@tallgrassrestoration.com

APPLICATION OF INFORMATION

This study shows that a range of control options can be successful in managing garlic mustard while minimizing injury to non-target plants. In the heavily invaded areas we studied, broadcast treatments were as effective as hand-pulling and IPT in controlling garlic mustard and promoting growth of other plants. Our results did not show that selective IPT applications were less damaging to non-target plants than broadcast treatments, but our sites were picked for high densities of garlic mustard, and this may have biased this result. Broadcast treatments are just as effective in these high-density areas and reduce time and resources spent on more selective treatments. In contrast, when desirable plants are present in garlic mustard infestations, reductions in desirable herbaceous vegetation can occur as the result of herbicide application. Treatments should be conducted in late fall or early spring to avoid desirable plants.

The timing of senescence of desirable plants is variable and site-specific; an area should be assessed before an application to ensure that desirable plants are fully senesced. Broadcast applications followed by IPT or hand pulling at a later period is also an effective option to consider as many of the effective treatments did not remove 100% of the garlic mustard. If sites will be seeded following herbicide application, the persistence and activity of the herbicide in the soil must also be considered, since some herbicides like Escort can persist for months, while others have no activity in the soil (e.g. glyphosate). In conclusion, a range of management options are available for garlic mustard, and options should be chosen based on the goals of the management as well as infestation size and desirable plant populations. Management and monitoring will be required for many years. We hope this information may be useful to improve management efficiency.
Wild Chervil in Wisconsin
by Courtney LeClair

Wild chervil, *Anthriscus sylvestris*, is believed to have been introduced in wildflower mixes from Europe where it is a native species; however, in North America, *A. sylvestris* competes with native vegetation by forming monospecific stands that shade out other species and contend for nutrients. Wild chervil is also a host to a virus that infects carrots, parsnip, and celery. Populations are often found in prairies, fields, pastures, along roads, and in disturbed areas. Mowing wild chervil at the wrong time of season can increase the spread of this prolific seed producer.

Wild chervil is considered a biennial or short-lived perennial, which means that the plant will be a basal rosette for at least the first year; if it is disturbed before producing flowering stems, the plant may stay as a rosette for more than one year after which it will flower, produce seed and die. Flowering stems grow to 3-4 feet tall and are hollow, hairy, and furrowed. Fern-like leaves are alternate with bases clasping the stem. White umbels bloom from late May to early July generally in the second year. Each flower that makes up the umbel has 5 notched petals and produces two joined seeds that are shiny brown and elongated with beaks. The root system consists of a taproot that is up to 6’ deep and has lateral buds near the root crown. Reproduction and spread is due to seed production and budding from the roots. Currently, wild chervil is found in isolated populations in Barron, Columbia, Dane, Grant, Milwaukee, Rock, and Walworth counties.

Many of the species in the parsley family are very similar in appearance including Queen Anne’s-lace, poison hemlock, and Japanese hedge-parsley. Identification by the seed is a sure way to confirm species presence. Wild chervil also blooms earlier than these...
Wild Chervil concluded

species and has no bracts present below the umbel. Native spreading chervil (*Chaerophyllum procumbens*) is of special concern in Wisconsin and is only recorded as being present in Grant, Green, and Rock counties. Spreading chervil is only 6-20” tall, the stem is only somewhat hairy, and is often found in moist areas including woods.

If anyone finds this invasive plant, please send location information to invasiveplants@mailplus.wisc.edu.

On May 25, nearly 100 people gathered at the UW-Madison Arboretum for our annual meeting. State Representative Spencer Black informed IPAW members of legislative successes in dealing with invasive plants and it was clear that he is a friend and leader in this area. IPAW honored the Invader Crusaders for 2009; as Peter Murray, chair of the Wisconsin Invasive Species Council, highlighted the accomplishments of each person and group honored, Representative Black presented the awardees with a genuine buckthorn plaque.

Welcome Amanda!

Amanda Schwoegler is IPAW’s new program assistant since Clarissa Hammond left to pursue a new adventure in Alaska. As an IPAW member, Amanda has seen IPAW develop over the years and is happy to have an opportunity to become more involved and help chart our future. Working for the Wisconsin Department of Natural Resources, Amanda gained valuable experience in database maintenance, coordinating meetings and tracking the action items that need attention. Her Master’s degree in environmental monitoring and active roles in volunteer efforts to preserve and restore the landscape have given her additional talents and qualifications as our program assistant. Our membership is happy to have you on board.

2009 Annual IPAW Meeting

On May 25, nearly 100 people gathered at the UW-Madison Arboretum for our annual meeting. State Representative Spencer Black informed IPAW members of legislative successes in dealing with invasive plants and it was clear that he is a friend and leader in this area. IPAW honored the Invader Crusaders for 2009; as Peter Murray, chair of the Wisconsin Invasive Species Council, highlighted the accomplishments of each person and group honored, Representative Black presented the awardees with a genuine buckthorn plaque.

IPAW officers described the main activities and accomplishments of the past year and invited attendees to consider active involvement on an IPAW committee or Board. An open discussion of questions and concerns from participants ranging from biocontrol of garlic mustard to how we could do more to educate the public followed the award presentations. The event concluded with a live comedy show and raffle of invasive plant related items. We hope to see you at our 2010 annual meeting! Through awareness comes positive change.
Those of us fighting invasive plants on our property often feel we are standing in a stream of rushing water plodding slowly upstream. Occasionally we reach a shallow point and feel a sense of progress or temporary control, but we never truly expect the flow to stop. We seek, but never expect, total eradication of the invasive plants that have our property in their grip. Nevertheless, we continue to hope we will reach a point where the flow is greatly reduced or even becomes a trickle, and that with proper management protocols firmly in place, perhaps including funding after our deaths, we might possibly feel, if not fully secure, at least resigned and stable.

Hedge Parsley

But what happens if upstream, and out of sight, a dam is leaking and about to break? This danger is how I would describe the coming invasion of Japanese Hedge Parsley. This plant represents an overwhelming flood, a massive onslaught of invasion, because it is rapidly showing behavior as bad, and probably worse, than Garlic Mustard. JHP is extremely aggressive, can appear practically anywhere, and one plant today will be 3,000 tomorrow.

Avoid allowing any seed to form and disperse - they are stick-seeds and disperse widely and easily, so without application of bulldog-like tenacity Japanese Hedge Parsley rapidly becomes practically impossible to control. About ten years ago we noticed an unknown plant on our property in rural NE Green County. Unfortunately we ignored it for a year or two and now from those half dozen Japanese Hedge Parsley plants has come a severe and gripping infestation now active in practically every possible condition - from beneath 30 year old pines, where it successfully booms, to the bright sunny rocky shoulders of the road. The only place I have not seen it is in an upland (mesic and dry) planted prairie, but anywhere it receives even the slightest amount of shade (and up to zero sun and/or eternal gloom) it will thrive. If the seed hits the soil, the plant will grow regardless of where, or what else is growing there. It [successfully] competes with everything. My fear is that this plant will be worse than Garlic Mustard. The seed can travel great distances due to its "Velcro" coat. The only solution seems to be to get to know this plant NOW and hit it hard the moment you see it. Waiting even one year may increase the work required 100-fold in the years to come.

JHP (*Torilis japonica*) is most easily recognized when it is a flat emerald-green first year plant rosette, or when it is blooming robustly in wispy sprays of miniature Queen's Ann's lace-like florets of a cool gray-white color. Between these stages it can look very much like Sweet Cicely (*Osmorhiza*), a native, and aside from a darker green color, and slightly different leaf character, the two plants are very easily confused, or overlooked, and both enjoy similar woodland conditions. JHP blooms at any height from about four inches (after cutting too early, or too high) to a massive size; we have seen plants 7' tall by 6' wide.

Each spring we seek and spray herbicide on the dark green flat rosettes, which stand out boldly at that time of year. The earlier the spraying the better, to reduce the collateral damage to natives that later spraying can cause. In warmer weather we pull or cut and bag (bag after August 1, or whenever flowers are aging and especially if seeds are beginning to form), or spray at first sight. In summer, if I am not bagging it, I take pains to pull it, if possible (a wet year really helps), or cut it at ground level being careful to cut all the many tentacles of the octopus like growth habit of this wily, but physically weak and easily broken, plant.

More detail, good images, and technical information is easily available at these sites:
DNR Fact Sheet:
www.dnr.state.wi.us/invasives/fact/japanparsley.htm
DNR Invasive Plant List:
www.dnr.state.wi.us/invasives/plants.asp
Parks, highways, and utility right-of-way workers collectively manage vegetation on a vast area of land. The areas and right-of-ways they manage are not only public use areas and corridors for highways and utilities, but also corridors for the development and spread of invasive plant populations. The Southeastern Wisconsin Invasive Species Consortium (SEWISC) held two, well-attended workshops on October 24 and 25 for southeastern Wisconsin public park, highway, and right-of-way managers at Havenwoods Environmental Center in Milwaukee and are planning two more in March 2010. Over 100 attendees were provided instruction and discussion on invasive species identification, management planning, control, best management practices (BMPs), and the new NR 40 rule in two, full-day, workshops that included several presentations and break-out sessions. Attendees confirmed the success of the workshops with overwhelmingly positive feedback.

Dr. Jim Reinartz, Director of the UW-Milwaukee Field Station led the workshops with a lot of assistance from the WDNR and other southeastern Wisconsin vegetation management, conservation, and restoration experts. Participants were eager and engaged, ready to learn about invasive species management. “I was very impressed with the level of energy and enthusiasm among participants, especially highway and right of way staff,” said Reinartz.

The counties involved in this project include Sheboygan, Ozaukee, Washington, Milwaukee, Waukesha, Racine, Walworth and Kenosha. The coastal county area of southeastern Wisconsin is the primary gateway for invasives into Wisconsin due to the high rate of roadway travel to and from Illinois as well as the maritime traffic into the Port of Milwaukee from Lake Michigan. An estimated 5 new invasive species may be entering the coastal southeast region each year. Through these workshops, land managers gain the skills and tools to plan for, identify, manage, and report invasive species. A Wisconsin Coastal Management Program grant provided partial funding for this SEWISC workshop project, with additional support from We Energies, UW-Milwaukee, and Town & Country RC&D.

SEWISC’s spring 2010 workshops will be held on Wednesday, March 24 for Park managers and staff, and Thursday, March 25 for the Highway and Right-of-Way audience. If you are interested in attending one of these workshops, contact Belle Bergner at (414) 455-6674 or bbergner@bergnerassociates.com, for more information, or you can download a brochure and registration form for the spring workshops at: http://www4.uwm.edu/fieldstation/workshops.
Plants out of Place

is a periodic newsletter distributed to the members of IPAW.

Send comments, suggestions, and articles that you think may be of interest to IPAW to the newsletter Editor:

Jim Reinartz
UW-Milwaukee Field Station
3095 Blue Goose Road
Saukville, WI 53080

Phone: (262) 675-6844
Fax: (262) 675-0337
email: jimr@uwm.edu

Invasive Plants Association of Wisconsin
P. O. Box 5274
Madison, WI 53705-0274

Return Service Requested

Table of Contents
Invader Crusaders 2009 1
Technology Libraries, C. LeClair 2
Japanese Hops, L. MacFarland 3
Effects of Timing on Garlic Mustard Management, Renz, et al. 4-7
Invasive Removal Squad, L. Yunker 7
Wild Chervil in Wisconsin, C. LeClair 8-9
Welcome Amanda Schwoegler 9
2009 Annual IPAW Meeting 9
Japanese Hedge Parsley, C. Bauer 10
SEWISC Workshops, B. Bergner 11

Join IPAW Today!
Invasive Plants Association of Wisconsin
P.O. Box 5274
Madison, WI 53705-0274

Membership Categories:
• $20.00 individual
• $30.00 family
• $10.00 student
• $100.00 organization/agency

For information about joining and a membership form, email: Membership@IPAW.org

Check out what IPAW is working on!
go to www.ipaw.org

Production and distribution of this newsletter is made possible through a grant from we energies.

If there is no membership expiration date on your address label, you are not yet a member - please join!